Finite simple groups with complemented maximal subgroups.
Let be a finite group and write for the degree set of the complex irreducible characters of . The group is said to satisfy the two-prime hypothesis if for any distinct degrees , the total number of (not necessarily different) primes of the greatest common divisor is at most . We prove an upper bound on the number of irreducible character degrees of a nonsolvable group that has a composition factor isomorphic to PSL for .
In the present paper, we classify groups with the same order and degree pattern as an almost simple group related to the projective special linear simple group . As a consequence of this result we can give a positive answer to a conjecture of W. J. Shi and J. X. Bi, for all almost simple groups related to except . Also, we prove that if is an almost simple group related to except and is a finite group such that and , then .