Displaying 61 – 80 of 97

Showing per page

Sull'esistenza di sottogruppi nilpotenti auto-normalizzanti in alcuni gruppi semplici

Alma D’Aniello (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We consider the Suzuki groups and we show that there are no nilpotent self-normalizing subgroups and there are three conjugacy classes of F-projectors, where F is the formation of supersoluble groups.

Sull’esistenza di sottogruppi nilpotenti autonormalizzanti in alcuni gruppi semplici, II

Alma D'Aniello (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We prove that in the Mathieu groups there is a unique conjugacy class of nilpotent self-normalizing subgroups, the class of the 2-Sylow subgroups. In the Janko group J 1 there are no nilpotent self-normalizing subgroups.

The small Ree group 2 G 2 ( 3 2 n + 1 ) and related graph

Alireza K. Asboei, Seyed S. S. Amiri (2018)

Commentationes Mathematicae Universitatis Carolinae

Let G be a finite group. The main supergraph 𝒮 ( G ) is a graph with vertex set G in which two vertices x and y are adjacent if and only if o ( x ) o ( y ) or o ( y ) o ( x ) . In this paper, we will show that G 2 G 2 ( 3 2 n + 1 ) if and only if 𝒮 ( G ) 𝒮 ( 2 G 2 ( 3 2 n + 1 ) ) . As a main consequence of our result we conclude that Thompson’s problem is true for the small Ree group 2 G 2 ( 3 2 n + 1 ) .

Three amalgams of A_5

Panagiotis Papadopoulos (1999)

Δελτίο της Ελληνικής Μαθηματικής Εταιρίας

Torsion units for some almost simple groups

Joe Gildea (2016)

Czechoslovak Mathematical Journal

We investigate the Zassenhaus conjecture regarding rational conjugacy of torsion units in integral group rings for certain automorphism groups of simple groups. Recently, many new restrictions on partial augmentations for torsion units of integral group rings have improved the effectiveness of the Luther-Passi method for verifying the Zassenhaus conjecture for certain groups. We prove that the Zassenhaus conjecture is true for the automorphism group of the simple group PSL ( 2 , 11 ) . Additionally we prove that...

Currently displaying 61 – 80 of 97