A Characteristic 2-Subgroups of a Finite Special Group.
Page 1 Next
Makoto Hayashi (1982)
Mathematische Zeitschrift
Dilip S. Gajendragadkar (1980)
Journal für die reine und angewandte Mathematik
Aleš Drápal (2008)
Commentationes Mathematicae Universitatis Carolinae
We investigate loops defined upon the product by the formula , where , for appropriate parameters . Each such loop is coupled to a 2-cocycle (in the group-theoretical sense) and this connection makes it possible to prove that the loop possesses a metacyclic inner mapping group. If , then the loop is an A-loop. Questions of isotopism and isomorphism are considered in detail.
Gert-Martin Greuel (2003)
Revista Matemática Iberoamericana
We report on a partial solution of the conjecture that the class of finite solvable groups can be characterised by 2-variable identities. The proof requires pieces from number theory, algebraic geometry, singularity theory and computer algebra. The computations were carried out using the computer algebra system SINGULAR.
Miao, Long, Qian, Guohua (2009)
Sibirskij Matematicheskij Zhurnal
Luis M. Ezquerro (1993)
Rendiconti del Seminario Matematico della Università di Padova
Bhattacharya, Prabir, Mukherjee, N.P. (1989)
International Journal of Mathematics and Mathematical Sciences
Helmut Bender (1972)
Mathematische Zeitschrift
Paz Jiménez Seral (1993)
Rendiconti del Seminario Matematico della Università di Padova
Peter Hauck, Hans Kurzweil (1990)
Manuscripta mathematica
Alberto Espuelas (1987)
Mathematische Zeitschrift
Li, Yangming, Qiao, Shouhong, Wang, Yanming (2009)
Sibirskij Matematicheskij Zhurnal
Mariagrazia Bianchi, Anna Gillio, Carlo Casolo (2001)
Rendiconti del Seminario Matematico della Università di Padova
Marta Morigi (1997)
Rendiconti del Seminario Matematico della Università di Padova
Mukherjee, N.P., Khazal, R. (1990)
International Journal of Mathematics and Mathematical Sciences
Alan R. Camina (1974)
Mathematische Zeitschrift
Khazal, R., Mukherjee, N.P. (1989)
International Journal of Mathematics and Mathematical Sciences
Khazal, R., Mukherjee, N.P. (1994)
International Journal of Mathematics and Mathematical Sciences
Marco Barlotti (1984)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Un gruppo finito ciclico-per-nilpotente appartiene alla minima classe di Fitting normale se e solo se è nilpotente.
Zhengtian Qiu, Guiyun Chen, Jianjun Liu (2024)
Czechoslovak Mathematical Journal
Let be a subgroup of a finite group . We say that satisfies the -property in if for any chief factor of , is a -number. We obtain some criteria for the -supersolubility or -nilpotency of a finite group and extend some known results by concerning some subgroups that satisfy the -property.
Page 1 Next