On Hadamard property of 2-groups with special conditions on normal subgroups.
We give sufficient and in some cases necessary conditions for the conjugacy closedness of provided the commutativity of . We show that if for some loop , and are abelian groups, then is a CC loop, consequently has nilpotency class at most three. We give additionally some reasonable conditions which imply the nilpotency of the multiplication group of class at most three. We describe the structure of Buchsteiner loops with abelian inner mapping groups.
Our aim is to determine necessary and sufficient conditions for a finite nilpotent group to have a faithful irreducible projective representation over a field of characteristic p ≥ 0.
This article describes a rough subgroup with respect to a normal subgroup of a group, and some properties of the lower and the upper approximations in a group.
The paper reports the results of a search for pairs of groups of order that can be placed in the distance for the case when . The constructions that are used are of the general character and some of their properties are discussed as well.
Let G be some metabelian 2-group satisfying the condition G/G’ ≃ ℤ/2ℤ × ℤ/2ℤ × ℤ/2ℤ. In this paper, we construct all the subgroups of G of index 2 or 4, we give the abelianization types of these subgroups and we compute the kernel of the transfer map. Then we apply these results to study the capitulation problem for the 2-ideal classes of some fields k satisfying the condition , where is the second Hilbert 2-class field of k.
In questo lavoro viene data una caratterizzazione di quei -gruppi nilpotenti di classe due ed esponente che sono speciali. Vengono inoltre studiate alcune costruzioni, automorfismi e sottogruppi abeliani di -gruppi speciali.
We prove that if the average number of Sylow subgroups of a finite group is less than and not equal to , then is solvable or . In particular, if the average number of Sylow subgroups of a finite group is , then , where is the largest normal solvable subgroup of . This generalizes an earlier result by Moretó et al.