Simply connected coset complexes for rank 1 groups of Lie type.
We introduce and study the lattice of normal subgroups of a group G that determine solitary quotients. It is closely connected to the well-known lattice of solitary subgroups of G, see [Kaplan G., Levy D., Solitary subgroups, Comm. Algebra, 2009, 37(6), 1873–1883]. A precise description of this lattice is given for some particular classes of finite groups.
In this paper we study finite non abelian groups in which every proper normal subgroup and every proper epimorphic image is abelian. Also we study finite non nilpotent groups in which every normal subgroup and every proper epimorphic image is nilpotent and those finite soluble non nilpotent groups in which every proper normal subgroup is nilpotent.
Groups all whose nonidentity subgroups split over a normal inseparable nonidentity subgroup are studied.
In this paper we study the class of finite groups whose nilpotent residual is a Hall subgroup having all subgroups normal in .
Sia un gruppo finito non abeliano e il suo centro. Sia l’insieme parzialmente ordinato dei centralizzanti di . Si dice che ha «rango » se la lunghezza di è , e si dice che esso è un «-gruppo» se ogni è abeliano. Ogni -gruppo ha rango . Schmidt [10] ha classificato gli -gruppi. In questa Nota si classificano i gruppi di rango 1 che non sono -gruppi.
Sia un gruppo non abeliano né hamiltoniano, ed un intero . Si dice che appartiene a se tutti i sottogruppi non normali di hanno ordine . Sia un numero primo. In questa Nota vengono determinati: 1) tutti i -gruppi in (Teoremi 1 e 2); 2) tutti i -gruppi in per e (Teorema 3); 3) tutti i gruppi di esponente appartenenti ad (Teorema 4).
Si studiano le partizioni dei -gruppi finiti e, in particolare, le equipartizioni. Si danno risultati sulle equipartizioni dei -gruppi di classe submassimale.
Si studiano le partizioni dei -gruppi finiti e, in particolare, quelle con molti componenti di un dato ordine. Si deriva una condizione necessaria (Teorema 1) per l'esistenza di tali partizioni in termini di gradi dei caratteri irriducibili. Si deducono quindi alcuni corollari e si dà un'applicazione ai gruppi di matrici unitriangolari (Proposizione 3).