Solubility of Finite Groups Admitting a Fixed-Point-Free Automorphism of Order rst. IV.
In this Note conditions for the existence of a normal -complement and for the supersolubility of a finite group are given.
In this paper we study the class of finite groups whose nilpotent residual is a Hall subgroup having all subgroups normal in .
The purpose of this paper is to study the subgroup embedding properties of S-semipermutability, semipermutability, and seminormality. Here we say H is S-semipermutable (resp. semipermutable) in a group Gif H permutes which each Sylow subgroup (resp. subgroup) of G whose order is relatively prime to that of H. We say H is seminormal in a group G if H is normalized by subgroups of G whose order is relatively prime to that of H. In particular, we establish that a seminormal p-subgroup is subnormal....
Sia un gruppo finito non abeliano e il suo centro. Sia l’insieme parzialmente ordinato dei centralizzanti di . Si dice che ha «rango » se la lunghezza di è , e si dice che esso è un «-gruppo» se ogni è abeliano. Ogni -gruppo ha rango . Schmidt [10] ha classificato gli -gruppi. In questa Nota si classificano i gruppi di rango 1 che non sono -gruppi.
A subgroup of a finite group is weakly-supplemented in if there exists a proper subgroup of such that . In the paper it is proved that a finite group is -nilpotent provided is the smallest prime number dividing the order of and every minimal subgroup of is weakly-supplemented in where is a Sylow -subgroup of . As applications, some interesting results with weakly-supplemented minimal subgroups of are obtained.
Nel presente lavoro vengono dimostrati teoremi d'esistenza di -complementi normali nei gruppi finiti.