Displaying 181 – 200 of 1356

Showing per page

Classification of finite groups with many minimal subgroups and with the number of conjugacy classes of G/S(G) equal to 8.

Antonio Vera López, Jesús María Arregi Lizarraga, Francisco José Vera López (1990)

Collectanea Mathematica

In this paper we classify all the finite groups satisfying r(G/S(G))=8 and ß(G)=r(G) - a(G) - 1, where r(G) is the number of conjugacy classes of G, ß(G) is the number of minimal normal subgroups of G, S(G) the socle of G and a(G) the number of conjugacy classes of G out of S(G). These results are a contribution to the general problem of the classification of the finite groups according to the number of conjugacy classes.

Commutative subloop-free loops

Martin Beaudry, Louis Marchand (2011)

Commentationes Mathematicae Universitatis Carolinae

We describe, in a constructive way, a family of commutative loops of odd order, n 7 , which have no nontrivial subloops and whose multiplication group is isomorphic to the alternating group 𝒜 n .

Conditions for p-supersolubility and p-nilpotency of finite soluble groups

Wenai Yan, Baojun Li, Zhirang Zhang (2013)

Colloquium Mathematicae

Let ℨ be a complete set of Sylow subgroups of a group G. A subgroup H of G is called ℨ-permutably embedded in G if every Sylow subgroup of H is also a Sylow subgroup of some ℨ-permutable subgroup of G. By using this concept, we obtain some new criteria of p-supersolubility and p-nilpotency of a finite group.

Currently displaying 181 – 200 of 1356