Displaying 41 – 60 of 118

Showing per page

Some questions on quasinilpotent groups and related classes.

M.J. Iranzo, J. Medina, F. Pérez-Monasor (2002)

Revista Matemática Iberoamericana

In this paper we will prove that if G is a finite group, X a subnormal subgroup of X F*(G) such that X F*(G) is quasinilpotent and Y is a quasinilpotent subgroup of NG(X), then Y F*(NG(X)) is quasinilpotent if and only if Y F*(G) is quasinilpotent. Also we will obtain that F*(G) controls its own fusion in G if and only if G = F*(G).

Some remarks on groups in which elements with the same p -power commute

Patrizia Longobardi, Mercede Maj (1999)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we characterize certain classes of groups G in which, from x p = y p ( x , y G , p a fixed prime), it follows that x y = y x . Our results extend results previously obtained by other authors, in the finite case.

Some results on Sylow numbers of finite groups

Yang Liu, Jinjie Zhang (2024)

Czechoslovak Mathematical Journal

We study the group structure in terms of the number of Sylow p -subgroups, which is denoted by n p ( G ) . The first part is on the group structure of finite group G such that n p ( G ) = n p ( G / N ) , where N is a normal subgroup of G . The second part is on the average Sylow number asn ( G ) and we prove that if G is a finite nonsolvable group with asn ( G ) < 39 / 4 and asn ( G ) 29 / 4 , then G / F ( G ) A 5 , where F ( G ) is the Fitting subgroup of G . In the third part, we study the nonsolvable group with small sum of Sylow numbers.

Some results on the recognizability of the linear groups over the binary field

Mohammad Reza Darafsheh, Yaghoub Farjami, M. Khademi, Ali Reza Moghaddamfar (2005)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we first find the set of orders of all elements in some special linear groups over the binary field. Then, we will prove the characterizability of the special linear group PSL ( 13 , 2 ) using only the set of its element orders.

Sopra alcune classi di gruppi minimali non-P

Juan Morales Rodriguez (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we study finite non abelian groups in which every proper normal subgroup and every proper epimorphic image is abelian. Also we study finite non nilpotent groups in which every normal subgroup and every proper epimorphic image is nilpotent and those finite soluble non nilpotent groups in which every proper normal subgroup is nilpotent.

Currently displaying 41 – 60 of 118