Previous Page 2

Displaying 21 – 26 of 26

Showing per page

Amenable, transitive and faithful actions of groups acting on trees

Pierre Fima (2014)

Annales de l’institut Fourier

We study under which condition an amalgamated free product or an HNN-extension over a finite subgroup admits an amenable, transitive and faithful action on an infinite countable set. We show that such an action exists if the initial groups admit an amenable and almost free action with infinite orbits (e.g. virtually free groups or infinite amenable groups). Our result relies on the Baire category Theorem. We extend the result to groups acting on trees.

Currently displaying 21 – 26 of 26

Previous Page 2