The search session has expired. Please query the service again.
Let G be a group of automorphisms of a tree X (with set of vertices S) and H a kernel on S × S invariant under the action of G. We want to give an estimate of the -operator norm (1 ≤ r ≤ 2) of the operator associated to H in terms of a norm for H. This was obtained by U. Haagerup when G is the free group acting simply transitively on a homogeneous tree.
Our result is valid when X is a locally finite tree and one of the orbits of G is the set of vertices at even distance from a given vertex; a technical...
Un système fini d’isométries partielles de est dit à générateurs indépendants si les composés non triviaux fixent au plus un point. On décrit un procédé simple et naturel pour obtenir des générateurs indépendants, sans modifier les orbites, pour tout système sans composante minimale homogène : en prenant la restriction de chaque générateur à un certain sous-intervalle de son domaine. Un système avec une composante minimale homogène ne possède pas de générateurs indépendants.
We show that there exists a finitely generated group of growth for all functions satisfying for all large enough and the positive root of . Set ; then all functions that grow uniformly faster than are realizable as the growth of a group.We also give a family of sum-contracting branched groups of growth for a dense set of .
Currently displaying 1 –
10 of
10