Page 1

Displaying 1 – 8 of 8

Showing per page

A property which ensures that a finitely generated hyper-(Abelian-by-finite) group is finite-by-nilpotent

Fares Gherbi, Nadir Trabelsi (2024)

Czechoslovak Mathematical Journal

Let 𝔐 be the class of groups satisfying the minimal condition on normal subgroups and let Ω be the class of groups of finite lower central depth, that is groups G such that γ i ( G ) = γ i + 1 ( G ) for some positive integer i . The main result states that if G is a finitely generated hyper-(Abelian-by-finite) group such that for every x G , there exists a normal subgroup H x of finite index in G satisfying x , x h 𝔐 Ω for every h H x , then G is finite-by-nilpotent. As a consequence of this result, we prove that a finitely generated hyper-(Abelian-by-finite)...

A short proof of a theorem of Brodskii.

James Howie (2000)

Publicacions Matemàtiques

A short proof, using graphs and groupoids, is given of Brodskii’s theorem that torsion-free one-relator groups are locally indicable.

Currently displaying 1 – 8 of 8

Page 1