Inert subgroups of uncountable locally finite groups
Let be an uncountable universal locally finite group. We study subgroups such that for every , .
Page 1
Barbara Majcher-Iwanow (2003)
Commentationes Mathematicae Universitatis Carolinae
Let be an uncountable universal locally finite group. We study subgroups such that for every , .
Javier Otal, Juan Manuel Peña (1988)
Publicacions Matemàtiques
In classifying certain infinite groups under minimal conditions it is needed to find non-simplicity criteria for the groups under consideration. We obtain some of such criteria as a consequence of the main result of the paper and the classification of finite simple groups.
Lucia Serena Spiezia (1992)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
In this paper we deal with the class of groups for which whenever we choose two infinite subsets , there exist two elements , such that . We prove that an infinite finitely generated soluble group in the class is in the class of -Engel groups. Furthermore, with , we show that if is infinite locally soluble or hyperabelian group then .
Rolf Brandl (1983)
Mathematische Zeitschrift
Gilbert Baumslag, Frank B. Cannonito (1977)
Mathematische Zeitschrift
Federico Menegazzo (1973)
Rendiconti del Seminario Matematico della Università di Padova
Page 1