On - and -decomposable finite groups
Let be a finite group. A normal subgroup of is a union of several -conjugacy classes, and it is called -decomposable in if it is a union of distinct -conjugacy classes. In this paper, we first classify finite non-perfect groups satisfying the condition that the numbers of conjugacy classes contained in its non-trivial normal subgroups are two consecutive positive integers, and we later prove that there is no non-perfect group such that the numbers of conjugacy classes contained in its...
A group is said to be a PC-group, if is a polycyclic-by-finite group for all . A minimal non-PC-group is a group which is not a PC-group but all of whose proper subgroups are PC-groups. Our main result is that a minimal non-PC-group having a non-trivial finite factor group is a finite cyclic extension of a divisible abelian group of finite rank.
In this article, we study the elements with disconnected centralizer in the Brauer complex associated to a simple algebraic group defined over a finite field with corresponding Frobenius map and derive the number of -stable semisimple classes of with disconnected centralizer when the order of the fundamental group has prime order. We also discuss extendibility of semisimple characters of the fixed point subgroup to their inertia group in the full automorphism group. As a consequence, we...
Let be a normal subgroup of a group . The structure of is given when the -conjugacy class sizes of is a set of a special kind. In fact, we give the structure of a normal subgroup under the assumption that the set of -conjugacy class sizes of is , where , and are distinct primes for , .
Gli autori studiano il sottogruppo intersezione dei sottogruppi massimali e non supersolubili di un gruppo finito e le relazioni tra la struttura di e quella di .
For a finite group and a non-linear irreducible complex character of write . In this paper, we study the finite non-solvable groups such that consists of at most two conjugacy classes for all but one of the non-linear irreducible characters of . In particular, we characterize a class of finite solvable groups which are closely related to the above-mentioned question and are called solvable -groups. As a corollary, we answer Research Problem in [Y. Berkovich and L. Kazarin: Finite...