Hadamard spaces with isolated flats. (With an appendix written jointly with Mohamad Hindawi).
Let be the multiplicative semigroup of all complex matrices, and let and be the –degree unitary group and general linear group over complex number field, respectively. We characterize group homomorphisms from to when or , and thereby determine multiplicative homomorphisms from to when or . This generalize Hochwald’s result in [Lin. Alg. Appl. 212/213:339-351(1994)]: if is a spectrum–preserving multiplicative homomorphism, then there exists a matrix in such that for...
Let be homogeneous trees with degrees , respectively. For each tree, let be the Busemann function with respect to a fixed boundary point (end). Its level sets are the horocycles. The horocyclic product of is the graph consisting of all -tuples with , equipped with a natural neighbourhood relation. In the present paper, we explore the geometric, algebraic, analytic and probabilistic properties of these graphs and their isometry groups. If and then we obtain a Cayley graph of the...