Page 1

Displaying 1 – 18 of 18

Showing per page

Basic subgroups in abelian group rings

Peter Vassilev Danchev (2002)

Czechoslovak Mathematical Journal

Suppose R is a commutative ring with identity of prime characteristic p and G is an arbitrary abelian p -group. In the present paper, a basic subgroup and a lower basic subgroup of the p -component U p ( R G ) and of the factor-group U p ( R G ) / G of the unit group U ( R G ) in the modular group algebra R G are established, in the case when R is weakly perfect. Moreover, a lower basic subgroup and a basic subgroup of the normed p -component S ( R G ) and of the quotient group S ( R G ) / G p are given when R is perfect and G is arbitrary whose G / G p is p -divisible....

Basic subgroups in commutative modular group rings

Peter Vassilev Danchev (2004)

Mathematica Bohemica

Let S ( R G ) be a normed Sylow p -subgroup in a group ring R G of an abelian group G with p -component G p and a p -basic subgroup B over a commutative unitary ring R with prime characteristic p . The first central result is that 1 + I ( R G ; B p ) + I ( R ( p i ) G ; G ) is basic in S ( R G ) and B [ 1 + I ( R G ; B p ) + I ( R ( p i ) G ; G ) ] is p -basic in V ( R G ) , and [ 1 + I ( R G ; B p ) + I ( R ( p i ) G ; G ) ] G p / G p is basic in S ( R G ) / G p and [ 1 + I ( R G ; B p ) + I ( R ( p i ) G ; G ) ] G / G is p -basic in V ( R G ) / G , provided in both cases G / G p is p -divisible and R is such that its maximal perfect subring R p i has no nilpotents whenever i is natural. The second major result is that B ( 1 + I ( R G ; B p ) ) is p -basic in V ( R G ) and ( 1 + I ( R G ; B p ) ) G / G is p -basic in V ( R G ) / G ,...

Bicyclic commutator quotients with one non-elementary component

Daniel Mayer (2023)

Mathematica Bohemica

For any number field K with non-elementary 3 -class group Cl 3 ( K ) C 3 e × C 3 , e 2 , the punctured capitulation type ϰ ( K ) of K in its unramified cyclic cubic extensions L i , 1 i 4 , is an orbit under the action of S 3 × S 3 . By means of Artin’s reciprocity law, the arithmetical invariant ϰ ( K ) is translated to the punctured transfer kernel type ϰ ( G 2 ) of the automorphism group G 2 = Gal ( F 3 2 ( K ) / K ) of the second Hilbert 3 -class field of K . A classification of finite 3 -groups G with low order and bicyclic commutator quotient G / G ' C 3 e × C 3 , 2 e 6 , according to the algebraic invariant...

Bitwisted Burnside-Frobenius theorem and Dehn conjugacy problem

Alexander Fel'shtyn (2009)

Banach Center Publications

It is proved for Abelian groups that the Reidemeister coincidence number of two endomorphisms ϕ and ψ is equal to the number of coincidence points of ϕ̂ and ψ̂ on the unitary dual, if the Reidemeister number is finite. An affirmative answer to the bitwisted Dehn conjugacy problem for almost polycyclic groups is obtained. Finally, we explain why the Reidemeister numbers are always infinite for injective endomorphisms of Baumslag-Solitar groups.

Boundaries of right-angled hyperbolic buildings

Jan Dymara, Damian Osajda (2007)

Fundamenta Mathematicae

We prove that the boundary of a right-angled hyperbolic building is a universal Menger space. As a consequence, the 3-dimensional universal Menger space is the boundary of some Gromov-hyperbolic group.

Bounding the orders of finite subgroups.

Ian J. Leary, Brita E. A. Nucinkis (2001)

Publicacions Matemàtiques

We give homological conditions on groups such that whenever the conditions hold for a group G, there is a bound on the orders of finite subgroups of G. This extends a result of P. H. Kropholler. We also suggest a weaker condition under which the same conclusion might hold.

Bruhat-Tits theory from Berkovich’s point of view. I. Realizations and compactifications of buildings

Bertrand Rémy, Amaury Thuillier, Annette Werner (2010)

Annales scientifiques de l'École Normale Supérieure

We investigate Bruhat-Tits buildings and their compactifications by means of Berkovich analytic geometry over complete non-Archimedean fields. For every reductive group G over a suitable non-Archimedean field k we define a map from the Bruhat-Tits building ( G , k ) to the Berkovich analytic space G an associated with G . Composing this map with the projection of G an to its flag varieties, we define a family of compactifications of ( G , k ) . This generalizes results by Berkovich in the case of split groups. Moreover,...

Brunnian links

Paul Gartside, Sina Greenwood (2007)

Fundamenta Mathematicae

A Brunnian link is a set of n linked loops such that every proper sublink is trivial. Simple Brunnian links have a natural algebraic representation. This is used to determine the form, length and number of minimal simple Brunnian links. Braids are used to investigate when two algebraic words represent equivalent simple Brunnian links that differ only in the arrangement of the component loops.

Currently displaying 1 – 18 of 18

Page 1