Soluble Products of Polycyclic Groups.
Page 1
James E. Roseblade, John C. Lennox (1980)
Mathematische Zeitschrift
Martyn Dixon, Thomas A. Fournelle (1984)
Compositio Mathematica
M.J. Iranzo, J. Medina, F. Pérez-Monasor (2002)
Revista Matemática Iberoamericana
In this paper we will prove that if G is a finite group, X a subnormal subgroup of X F*(G) such that X F*(G) is quasinilpotent and Y is a quasinilpotent subgroup of NG(X), then Y F*(NG(X)) is quasinilpotent if and only if Y F*(G) is quasinilpotent. Also we will obtain that F*(G) controls its own fusion in G if and only if G = F*(G).
Peter Hilton, Robert Militello (1992)
Publicacions Matemàtiques
We identify two generalizations of the notion of a finitely generated nilpotent. Thus a nilpotent group G is fgp if Gp is fg as p-local group for each p; and G is fg-like if there exists a fg nilpotent group H such that Gp ≅ Hp for all p. The we have proper set-inclusions:{fg} ⊂ {fg-like} ⊂ {fgp}.We examine the extent to which fg-like nilpotent groups satisfy the axioms for a Serre class. We obtain a complete answer only in the case that [G, G] is finite. (The collection of fgp nilpotent groups...
Patrizia Longobardi, Mercede Maj (1999)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
In this paper we characterize certain classes of groups in which, from (, a fixed prime), it follows that . Our results extend results previously obtained by other authors, in the finite case.
Wong, P.C., Wong, K.B. (2008)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Javier Otal, Juan Manuel Peña (1991)
Rendiconti del Seminario Matematico della Università di Padova
Page 1