Soluble Products of Polycyclic Groups.
In this paper we will prove that if G is a finite group, X a subnormal subgroup of X F*(G) such that X F*(G) is quasinilpotent and Y is a quasinilpotent subgroup of NG(X), then Y F*(NG(X)) is quasinilpotent if and only if Y F*(G) is quasinilpotent. Also we will obtain that F*(G) controls its own fusion in G if and only if G = F*(G).
We identify two generalizations of the notion of a finitely generated nilpotent. Thus a nilpotent group G is fgp if Gp is fg as p-local group for each p; and G is fg-like if there exists a fg nilpotent group H such that Gp ≅ Hp for all p. The we have proper set-inclusions:{fg} ⊂ {fg-like} ⊂ {fgp}.We examine the extent to which fg-like nilpotent groups satisfy the axioms for a Serre class. We obtain a complete answer only in the case that [G, G] is finite. (The collection of fgp nilpotent groups...
In this paper we characterize certain classes of groups in which, from (, a fixed prime), it follows that . Our results extend results previously obtained by other authors, in the finite case.