The search session has expired. Please query the service again.
The structure of (generalized) soluble groups for which the set of all subnormal non-normal subgroups satisfies the maximal condition is described, taking as a model the known theory of groups in which normality is a transitive relation.
A subgroup H of a group G is called ascendant-by-finite in G if there exists a subgroup K of H such that K is ascendant in G and the index of K in H is finite. It is proved that a locally finite group with every subgroup ascendant-by-finite is locally nilpotent-by-finite. As a consequence, it is shown that the Gruenberg radical has finite index in the whole group.
A group G is called metamodular if for each subgroup H of G either the subgroup lattice 𝔏(H) is modular or H is a modular element of the lattice 𝔏(G). Metamodular groups appear as the natural lattice analogues of groups in which every non-abelian subgroup is normal; these latter groups have been studied by Romalis and Sesekin, and here their results are extended to metamodular groups.
Let be a group with the property that there are no infinite descending chains of non-subnormal subgroups of for which all successive indices are infinite. The main result is that if is a locally (soluble-by-finite) group with this property then either has all subgroups subnormal or is a soluble-by-finite minimax group. This result fills a gap left in an earlier paper by the same authors on groups with the stated property.
Currently displaying 1 –
7 of
7