The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The structure of (generalized) soluble groups for which the set of all subnormal non-normal subgroups satisfies the maximal condition is described, taking as a model the known theory of groups in which normality is a transitive relation.
A subgroup H of a group G is called ascendant-by-finite in G if there exists a subgroup K of H such that K is ascendant in G and the index of K in H is finite. It is proved that a locally finite group with every subgroup ascendant-by-finite is locally nilpotent-by-finite. As a consequence, it is shown that the Gruenberg radical has finite index in the whole group.
A group G is called metamodular if for each subgroup H of G either the subgroup lattice 𝔏(H) is modular or H is a modular element of the lattice 𝔏(G). Metamodular groups appear as the natural lattice analogues of groups in which every non-abelian subgroup is normal; these latter groups have been studied by Romalis and Sesekin, and here their results are extended to metamodular groups.
Let be a group with the property that there are no infinite descending chains of non-subnormal subgroups of for which all successive indices are infinite. The main result is that if is a locally (soluble-by-finite) group with this property then either has all subgroups subnormal or is a soluble-by-finite minimax group. This result fills a gap left in an earlier paper by the same authors on groups with the stated property.
Currently displaying 1 –
7 of
7