The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Si studiano i gruppi risolubili non di Černikov a quozienti propri di Černikov. Nel caso periodico tali gruppi sono tutti e soli i prodotti semidiretti con -gruppo abeliano elementare infinito e gruppo irriducibile di automorfismi di che sia infinito e di Černikov. Nel caso non periodico invece si riconduce tale studio a quello dei moduli a quozienti...
We characterize the solvable groups without infinite properly ascending chains of non-BFC subgroups and prove that a non-BFC group with a descending chain whose factors are finite or abelian is a Cernikov group or has an infinite properly descending chain of non-BFC subgroups.
Let be a group and an integer . We say that has the -permutation property if, for any elements in , there exists some permutation of , such that . We prouve that every group is an FC-nilpotent group of class , and that a finitely generated group has the -permutation property (for some ) if, and only if, it is abelian by finite. We prouve also that a group if, and only if, its derived subgroup has order at most 2.
Currently displaying 1 –
5 of
5