Simple modules over CC-groups and monolithic just non-CC-groups
In questo lavoro studiamo i non CC-gruppi monolitici con tutti i quozienti propri CC-gruppi, che hanno sottogruppi abeliani normali non banali.
In questo lavoro studiamo i non CC-gruppi monolitici con tutti i quozienti propri CC-gruppi, che hanno sottogruppi abeliani normali non banali.
We characterize the solvable groups without infinite properly ascending chains of non-BFC subgroups and prove that a non-BFC group with a descending chain whose factors are finite or abelian is a Cernikov group or has an infinite properly descending chain of non-BFC subgroups.
Let be a group and an integer . We say that has the -permutation property if, for any elements in , there exists some permutation of , such that . We prouve that every group is an FC-nilpotent group of class , and that a finitely generated group has the -permutation property (for some ) if, and only if, it is abelian by finite. We prouve also that a group if, and only if, its derived subgroup has order at most 2.