The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove that the natural HNN-extensions of the fractional Fibonacci groups are the fundamental groups of high-dimensional knot complements. We also give some characterization and interpretation of these knots. In particular we show that some of them are 2-knots.
Let M be a flat manifold. We say that M has the property if the Reidemeister number R(f) is infinite for every homeomorphism f: M → M. We investigate relations between the holonomy representation ρ of M and the property. When the holonomy group of M is solvable we show that if ρ has a unique ℝ-irreducible subrepresentation of odd degree then M has the property. This result is related to Conjecture 4.8 in [K. Dekimpe et al., Topol. Methods Nonlinear Anal. 34 (2009)].
Let X and Y be one-dimensional Peano continua. If the fundamental groups of X and Y are isomorphic, then X and Y are homotopy equivalent. Every homomorphism from the fundamental group of X to that of Y is a composition of a homomorphism induced from a continuous map and a base point change isomorphism.
Currently displaying 1 –
8 of
8