Groups whose proper subgroups are locally finite-by-nilpotent
If is a class of groups, then a group is said to be minimal non -group if all its proper subgroups are in the class , but itself is not an -group. The main result of this note is that if is an integer and if is a minimal non (respectively, )-group, then is a finitely generated perfect group which has no non-trivial finite factor and such that is an infinite simple group; where (respectively, , ) denotes the class of nilpotent (respectively, nilpotent of class at most , locally...