-изоморфизмы смешанных абелевых групп ранга
In this paper we investigate two new classes of torsion-free Abelian groups which arise in a natural way from the notion of a torsion-free Crawley group. A group is said to be an Erdős group if for any pair of isomorphic pure subgroups with , there is an automorphism of mapping onto ; it is said to be a weak Crawley group if for any pair of isomorphic dense maximal pure subgroups, there is an automorphism mapping onto . We show that these classes are extensive and pay attention to...
Assuming the continuum hypothesis, we construct a pure subgroup G of the Baer-Specker group with the following properties. Every endomorphism of G differs from a scalar multiplication by an endomorphism of finite rank. Yet G has uncountably many homomorphisms to ℤ.
We study the -theory of sequences of dual groups and give a complete classification of the -elementary classes by finding simple invariants for them. We show that nonstandard models exist.
The intrinsic algebraic entropy ent(ɸ) of an endomorphism ɸ of an Abelian group G can be computed using fully inert subgroups of ɸ-invariant sections of G, instead of the whole family of ɸ-inert subgroups. For a class of groups containing the groups of finite rank, aswell as those groupswhich are trajectories of finitely generated subgroups, it is proved that only fully inert subgroups of the group itself are needed to comput ent(ɸ). Examples show how the situation may be quite different outside...