On the ...-class of a product.
We prove that the converse of Theorem 9 in "On generalized inverses in C*-algebras" by Harte and Mbekhta (Studia Math. 103 (1992)) is indeed true.
This paper deals with the decidability of semigroup freeness. More precisely, the freeness problem over a semigroup S is defined as: given a finite subset X ⊆ S, decide whether each element of S has at most one factorization over X. To date, the decidabilities of the following two freeness problems have been closely examined. In 1953, Sardinas and Patterson proposed a now famous algorithm for the freeness problem over the free monoids....
This paper deals with the decidability of semigroup freeness. More precisely, the freeness problem over a semigroup S is defined as: given a finite subset X ⊆ S, decide whether each element of S has at most one factorization over X. To date, the decidabilities of the following two freeness problems have been closely examined. In 1953, Sardinas and Patterson proposed a now famous algorithm for the freeness problem over the free monoids. In 1991, Klarner, Birget and Satterfield proved the undecidability...
This paper deals with the decidability of semigroup freeness. More precisely, the freeness problem over a semigroup S is defined as: given a finite subset X ⊆ S, decide whether each element of S has at most one factorization over X. To date, the decidabilities of the following two freeness problems have been closely examined. In 1953, Sardinas and Patterson proposed a now famous algorithm for the freeness problem over the free monoids....
If and are positive integers with and , then the setis a multiplicative monoid known as an arithmetical congruence monoid (or ACM). For any monoid with units and any we say that is a factorization length of if and only if there exist irreducible elements of and . Let be the set of all such lengths (where whenever ). The Delta-set of the element is defined as the set of gaps in : and the Delta-set of the monoid is given by . We consider the when is an ACM with...