On the embedding of ordered semigroups into ordered group
It was shown in [7] that any right reversible, cancellative ordered semigroup can be embedded into an ordered group and as a consequence, it was shown that a commutative ordered semigroup can be embedded into an ordered group if and only if it is cancellative. In this paper we introduce the concept of -maher and -maher semigroups and use a technique similar to that used in [7] to show that any left reversible cancellative ordered or -maher semigroup can be embedded into an ordered group.