Displaying 141 – 160 of 556

Showing per page

Infinite independent systems of identities of alternative commutative algebra over a field of characteristic three

Nicolae Ion Sandu (2004)

Discussiones Mathematicae - General Algebra and Applications

Let 𝔄₃ denote the variety of alternative commutative (Jordan) algebras defined by the identity x³ = 0, and let 𝔖₂ be the subvariety of the variety 𝔄₃ of solvable algebras of solviability index 2. We present an infinite independent system of identities in the variety 𝔄₃ ∩ 𝔖₂𝔖₂. Therefore we infer that 𝔄₃ ∩ 𝔖₂𝔖₂ contains a continuum of infinite based subvarieties and that there exist algebras with an unsolvable words problem in 𝔄₃ ∩ 𝔖₂𝔖₂. It is worth mentioning that these results were...

Infinite simple Bol loops

Hubert Kiechle, Michael K. Kinyon (2004)

Commentationes Mathematicae Universitatis Carolinae

If the left multiplication group of a loop is simple, then the loop is simple. We use this observation to give examples of infinite simple Bol loops.

Inverse property, flexible loops

J. D. Phillips (2000)

Bollettino dell'Unione Matematica Italiana

Uno dei metodi migliori per scoprire le proprietà di un cappio chiuso è studiarne il gruppo di moltiplicazione [3], [4]. In questo breve saggio descriviamo i gruppi di moltiplicazione di una classe importante di cappi, e cioè di quella dei cappi flessibili che posseggono la proprietà inversa.

Inverse property of nonassociative abelian extensions

Ágota Figula, Péter T. Nagy (2020)

Commentationes Mathematicae Universitatis Carolinae

Our paper deals with the investigation of extensions of commutative groups by loops so that the quasigroups that result in the multiplication between cosets of the kernel subgroup are T-quasigroups. We limit our study to extensions in which the quasigroups determining the multiplication are linear functions without constant term, called linear abelian extensions. We characterize constructively such extensions with left-, right-, or inverse properties using a general construction according to an...

Invertibility criterion of composition of two multiary quasigroups

Fedir M. Sokhatsky, Iryna V. Fryz (2012)

Commentationes Mathematicae Universitatis Carolinae

We study invertibility of operations that are composition of two operations of arbitrary arities. We find the criterion for quasigroups and specifications for T -quasigroups. For this purpose we introduce notions of perpendicularity of operations and hypercubes. They differ from the previously introduced notions of orthogonality of operations and hypercubes [Belyavskaya G., Mullen G.L.: Orthogonal hypercubes and n -ary operations, Quasigroups Related Systems 13 (2005), no. 1, 73–86]. We establish...

Kikkawa loops and homogeneous loops

Michihiko Kikkawa (2004)

Commentationes Mathematicae Universitatis Carolinae

In H. Kiechle's publication ``Theory of K-loops'' [3], the name Kikkawa loops is given to symmetric loops introduced by the author in 1973. This concept started from an analogical imagination of sum of vectors in Euclidean space brought up on a sphere. In 1975, this concept was extended by him to the more general concept of homogeneous loops, and it led us to a non-associative generalization of the theory of Lie groups. In this article, the backstage of finding these concepts will be disclosed from...

Left MQQs whose left parastrophe is also quadratic

Simona Samardjiska, Danilo Gligoroski (2012)

Commentationes Mathematicae Universitatis Carolinae

A left quasigroup ( Q , q ) of order 2 w that can be represented as a vector of Boolean functions of degree 2 is called a left multivariate quadratic quasigroup (LMQQ). For a given LMQQ there exists a left parastrophe operation q defined by: q ( u , v ) = w q ( u , w ) = v that also defines a left multivariate quasigroup. However, in general, ( Q , q ) is not quadratic. Even more, representing it in a symbolic form may require exponential time and space. In this work we investigate the problem of finding a subclass of LMQQs whose left parastrophe...

Lexicographic product decompositions of half linearly ordered loops

Milan Demko (2007)

Czechoslovak Mathematical Journal

In this paper we prove for an hl-loop Q an assertion analogous to the result of Jakubík concerning lexicographic products of half linearly ordered groups. We found conditions under which any two lexicographic product decompositions of an hl-loop Q with a finite number of lexicographic factors have isomorphic refinements.

Linear identities in graph algebras

Agata Pilitowska (2009)

Commentationes Mathematicae Universitatis Carolinae

We find the basis of all linear identities which are true in the variety of entropic graph algebras. We apply it to describe the lattice of all subvarieties of power entropic graph algebras.

Loop characters

Kenneth Walter Johnson (2000)

Commentationes Mathematicae Universitatis Carolinae

A survey of the basic results of loop characters is given on the lines of the treatment of the author and J.D.H. Smith for characters of quasigroups, including some recent deveploments. One of the successes of the theory has been its suggestive influence on the theory of association schemes, group representations and the theory of the group determinant, and selected results arising are described. A section is devoted to an explanation of how the tool of loop characters has not yet been as startlingly...

Loop cohomology

Kenneth Walter Johnson, Charles R. Leedham-Green (1990)

Czechoslovak Mathematical Journal

Loops and quasigroups: Aspects of current work and prospects for the future

Jonathan D. H. Smith (2000)

Commentationes Mathematicae Universitatis Carolinae

This paper gives a brief survey of certain recently developing aspects of the study of loops and quasigroups, focussing on some of the areas that appear to exhibit the best prospects for subsequent research and for applications both inside and outside mathematics.

Currently displaying 141 – 160 of 556