Displaying 21 – 40 of 85

Showing per page

Semi-quotient mappings and spaces

Moiz ud Din Khan, Rafaqat Noreen, Muhammad Siddique Bosan (2016)

Open Mathematics

In this paper, we continue the study of s-topological and irresolute-topological groups. We define semi-quotient mappings which are stronger than semi-continuous mappings, and then consider semi-quotient spaces and groups. It is proved that for some classes of irresolute-topological groups (G, *, τ) the semi-quotient space G/H is regular. Semi-isomorphisms of s-topological groups are also discussed.

Sequential convergences in lattices

Ján Jakubík (1992)

Mathematica Bohemica

The notion of sequential convergence on a lattice is defined in a natural way. In the present paper we investigate the system C o n v L of all sequential convergences on a lattice L .

Solution of Belousov's problem

Maks A. Akivis, Vladislav V. Goldberg (2001)

Discussiones Mathematicae - General Algebra and Applications

The authors prove that a local n-quasigroup defined by the equation x n + 1 = F ( x , . . . , x ) = ( f ( x ) + . . . + f ( x ) ) / ( x + . . . + x ) , where f i ( x i ) , i,j = 1,...,n, are arbitrary functions, is irreducible if and only if any two functions f i ( x i ) and f j ( x j ) , i ≠ j, are not both linear homogeneous, or these functions are linear homogeneous but f i ( x i ) / x i f j ( x j ) / x j . This gives a solution of Belousov’s problem to construct examples of irreducible n-quasigroups for any n ≥ 3.

Solution of distributive-like quasigroup functional equations

Fedir M. Sokhatsky, Halyna V. Krainichuk (2012)

Commentationes Mathematicae Universitatis Carolinae

We are investigating quasigroup functional equation classification up to parastrophic equivalence [Sokhatsky F.M.: On classification of functional equations on quasigroups, Ukrainian Math. J. 56 (2004), no. 4, 1259–1266 (in Ukrainian)]. If functional equations are parastrophically equivalent, then their functional variables can be renamed in such a way that the obtained equations are equivalent, i.e., their solution sets are equal. There exist five classes of generalized distributive-like quasigroup...

Some aspects of nuclear vector groups

Lydia Außenhofer (2001)

Studia Mathematica

In [2] W. Banaszczyk introduced nuclear groups, a Hausdorff variety of abelian topological groups which is generated by all nuclear vector groups (cf. 2.3) and which contains all nuclear vector spaces and all locally compact abelian groups. We prove in 5.6 that the Hausdorff variety generated by all nuclear vector spaces and all locally compact abelian groups (denoted by 𝒱₁) is strictly smaller than the Hausdorff variety of all nuclear groups (denoted by 𝒱₂). More precisely,...

Currently displaying 21 – 40 of 85