Displaying 61 – 80 of 97

Showing per page

On the size of quotients of function spaces on a topological group

Ahmed Bouziad, Mahmoud Filali (2011)

Studia Mathematica

For a non-precompact topological group G, we consider the space C(G) of bounded, continuous, scalar-valued functions on G with the supremum norm, together with the subspace LMC(G) of left multiplicatively continuous functions, the subspace LUC(G) of left norm continuous functions, and the subspace WAP(G) of weakly almost periodic functions. We establish that the quotient space LUC(G)/WAP(G) contains a linear isometric copy of , and that the quotient space C(G)/LMC(G) (and a fortiori C(G)/LUC(G)) contains a linear isometric copy of when G is a normal non-P-group. When G is not a P-group but not necessarily normal we prove that the quotient is non-separable. For non-discrete P-groups, the quotient may sometimes be trivial and sometimes non-separable. When G is locally compact, we show that the quotient space LUC(G)/WAP(G) contains a linear isometric copy of ( κ ( G ) ) , where κ(G) is the minimal number of compact sets needed to cover G. This leads to the extreme non-Arens regularity of the group algebra L¹(G) when in addition either κ(G) is greater than or equal to the smallest cardinality of an open base at the identity e of G, or G is metrizable. These results are improvements and generalizations of theorems proved by various authors along the last 35 years and until very recently.

On the uniqueness of uniform norms and C*-norms

P. A. Dabhi, H. V. Dedania (2009)

Studia Mathematica

We prove that a semisimple, commutative Banach algebra has either exactly one uniform norm or infinitely many uniform norms; this answers a question asked by S. J. Bhatt and H. V. Dedania [Studia Math. 160 (2004)]. A similar result is proved for C*-norms on *-semisimple, commutative Banach *-algebras. These properties are preserved if the identity is adjoined. We also show that a commutative Beurling *-algebra L¹(G,ω) has exactly one uniform norm if and only if it has exactly one C*-norm; this is...

Power boundedness in Banach algebras associated with locally compact groups

E. Kaniuth, A. T. Lau, A. Ülger (2014)

Studia Mathematica

Let G be a locally compact group and B(G) the Fourier-Stieltjes algebra of G. Pursuing our investigations of power bounded elements in B(G), we study the extension property for power bounded elements and discuss the structure of closed sets in the coset ring of G which appear as 1-sets of power bounded elements. We also show that L¹-algebras of noncompact motion groups and of noncompact IN-groups with polynomial growth do not share the so-called power boundedness property. Finally, we give a characterization...

Relatively weak* closed ideals of A(G), sets of synthesis and sets of uniqueness

A. Ülger (2014)

Colloquium Mathematicae

Let G be a locally compact amenable group, and A(G) and B(G) the Fourier and Fourier-Stieltjes algebras of G. For a closed subset E of G, let J(E) and k(E) be the smallest and largest closed ideals of A(G) with hull E, respectively. We study sets E for which the ideals J(E) or/and k(E) are σ(A(G),C*(G))-closed in A(G). Moreover, we present, in terms of the uniform topology of C₀(G) and the weak* topology of B(G), a series of characterizations of sets obeying synthesis. Finally, closely related to...

Currently displaying 61 – 80 of 97