A characterization of groups with the one-sided Wiener property.
Let be a locally compact group. We continue our work [A. Ghaffari: -amenability of locally compact groups, Acta Math. Sinica, English Series, 26 (2010), 2313–2324] in the study of -amenability of a locally compact group defined with respect to a closed subgroup of . In this paper, among other things, we introduce and study a closed subspace of and then characterize the -amenability of using . Various necessary and sufficient conditions are found for a locally compact group to possess...
In the current work, a new notion of -weak amenability of Banach algebras using homomorphisms, namely --weak amenability is introduced. Among many other things, some relations between --weak amenability of a Banach algebra and , the Banach algebra of matrices with entries from , are studied. Also, the relation of this new concept of amenability of a Banach algebra and its unitization is investigated. As an example, it is shown that the group algebra is ()--weakly amenable for any...
For a locally convex *-algebra A equipped with a fixed continuous *-character ε (which is roughly speaking a generalized F*-algebra), we define a cohomological property, called property (FH), which is similar to character amenability. Let be the space of continuous functions with compact support on a second countable locally compact group G equipped with the convolution *-algebra structure and a certain inductive topology. We show that has property (FH) if and only if G has property (T). On...
We study the relationship between the classical invariance properties of amenable locally compact groups G and the approximate diagonals possessed by their associated group algebras L¹(G). From the existence of a weak form of approximate diagonal for L¹(G) we provide a direct proof that G is amenable. Conversely, we give a formula for constructing a strong form of approximate diagonal for any amenable locally compact group. In particular we have a new proof of Johnson's Theorem: A locally compact...