On automorphism groups of connected Lie groups.
To a pair of a Lie group and an open elliptic convex cone in its Lie algebra one associates a complex semigroup which permits an action of by biholomorphic mappings. In the case where is a vector space is a complex reductive group. In this paper we show that such semigroups are always Stein manifolds, that a biinvariant domain is Stein is and only if it is of the form , with convex, that each holomorphic function on extends to the smallest biinvariant Stein domain containing ,...
Let be a real symmetric space and the corresponding decomposition of the Lie algebra. To each open -invariant domain consisting of real ad-diagonalizable elements, we associate a complex manifold which is a curved analog of a tube domain with base , and we have a natural action of by holomorphic mappings. We show that is a Stein manifold if and only if is convex, that the envelope of holomorphy is schlicht and that -invariant plurisubharmonic functions correspond to convex -invariant...