Polarization and Unitary Representations of Solvable Lie Groups.
Let 𝓓 be a symmetric type two Siegel domain over the cone of positive definite Hermitian matrices and let N(Φ)S be a solvable Lie group acting simply transitively on 𝓓. We characterize polynomially growing pluriharmonic functions on 𝓓 by means of three N(Φ)S-invariant second order elliptic degenerate operators.
We prove that any simply connected nilpotent Lie group satisfies the qualitative uncertainty principle.