Eigenspace representations of nilpotent Lie groups.
Nous donnons dans cet article une désintégration en irréductibles explicite des restrictions aux sous-groupes connexes fermés des représentations unitaires et irréductibles pour les groupes de Lie nilpotents simplement connexes. Ainsi, nous décrivons un opérateur d'entrelacement qui ne tient pas compte des multiplicités intervenant dans la désintégration.
Inspiré par un travail de J.-P. Bézivin et F. Gramain sur les systèmes d’équations aux différences, on caractérise les sous-groupes d’un groupe de Lie réel (resp. complexe) , pour lesquels toute fonction continue (resp. entière) telle que l’ensemble des -translatées engendrent un -espace vectoriel de dimension finie, engendrent aussi un -espace vectoriel de dimension finie par - translation. On fait le lien avec les systèmes d’équations aux différences à coefficients constants.
We consider exponential functionals of a brownian motion with drift in ℝn, defined via a collection of linear functionals. We give a characterisation of the Laplace transform of their joint law as the unique bounded solution, up to a constant factor, to a Schrödinger-type partial differential equation. We derive a similar equation for the probability density. We then characterise all diffusions which can be interpreted as having the law of the brownian motion with drift conditioned on the law of...