Semibounded Unitary Representations of Double Extensions of Hilbert–Loop Groups
A unitary representation of a, possibly infinite dimensional, Lie group is called semibounded if the corresponding operators from the derived representation are uniformly bounded from above on some non-empty open subset of the Lie algebra of . We classify all irreducible semibounded representations of the groups which are double extensions of the twisted loop group , where is a simple Hilbert–Lie group (in the sense that the scalar product on its Lie algebra is invariant) and is...