The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 15 of 15

Showing per page

Subadditive functions and partial converses of Minkowski's and Mulholland's inequalities

J. Matkowski, T. Świątkowski (1993)

Fundamenta Mathematicae

Let ϕ be an arbitrary bijection of + . We prove that if the two-place function ϕ - 1 [ ϕ ( s ) + ϕ ( t ) ] is subadditive in + 2 then ϕ must be a convex homeomorphism of + . This is a partial converse of Mulholland’s inequality. Some new properties of subadditive bijections of + are also given. We apply the above results to obtain several converses of Minkowski’s inequality.

Currently displaying 1 – 15 of 15

Page 1