An integral inequality of convolution type.
We consider the eigenvalue problem for the p(x)-Laplace-Beltrami operator on the unit sphere. We prove same integro-differential inequalities related to the smallest positive eigenvalue of this problem.
The main observation of this note is that the Lebesgue measure μ in the Turán-Nazarov inequality for exponential polynomials can be replaced with a certain geometric invariant ω ≥ μ, which can be effectively estimated in terms of the metric entropy of a set, and may be nonzero for discrete and even finite sets. While the frequencies (the imaginary parts of the exponents) do not enter the original Turán-Nazarov inequality, they necessarily enter the definition of ω.
In this paper we point out an Ostrowski type inequality for convex functions which complement in a sense the recent results for functions of bounded variation and absolutely continuous functions. Applications in connection with the Hermite-Hadamard inequality are also considered.