Displaying 421 – 440 of 1525

Showing per page

First and second order Opial inequalities

Steven Bloom (1997)

Studia Mathematica

Let T γ f ( x ) = ʃ 0 x k ( x , y ) γ f ( y ) d y , where k is a nonnegative kernel increasing in x, decreasing in y, and satisfying a triangle inequality. An nth-order Opial inequality has the form ʃ 0 ( i = 1 n | T γ i f ( x ) | q i | ) | f ( x ) | q 0 w ( x ) d x C ( ʃ 0 | f ( x ) | p v ( x ) d x ) ( q 0 + + q n ) / p . Such inequalities can always be simplified to nth-order reduced inequalities, where the exponent q 0 = 0 . When n = 1, the reduced inequality is a standard weighted norm inequality, and characterizing the weights is easy. We also find necessary and sufficient conditions on the weights for second-order reduced Opial inequalities to hold.

Fractional Hardy inequalities and visibility of the boundary

Lizaveta Ihnatsyeva, Juha Lehrbäck, Heli Tuominen, Antti V. Vähäkangas (2014)

Studia Mathematica

We prove fractional order Hardy inequalities on open sets under a combined fatness and visibility condition on the boundary. We demonstrate by counterexamples that fatness conditions alone are not sufficient for such Hardy inequalities to hold. In addition, we give a short exposition of various fatness conditions related to our main result, and apply fractional Hardy inequalities in connection with the boundedness of extension operators for fractional Sobolev spaces.

Currently displaying 421 – 440 of 1525