On a property of Gram's determinant.
We obtain new variants of weighted Gagliardo-Nirenberg interpolation inequalities in Orlicz spaces, as a consequence of weighted Hardy-type inequalities. The weights we consider need not be doubling.
Let M be an N-function satisfying the Δ₂-condition, and let ω, φ be two other functions, with ω ≥ 0. We study Hardy-type inequalities , where u belongs to some set of locally absolutely continuous functions containing . We give sufficient conditions on the triple (ω,φ,M) for such inequalities to be valid for all u from a given set . The set may be smaller than the set of Hardy transforms. Bounds for constants are also given, yielding classical Hardy inequalities with best constants.