More about Hermite-Hadamard inequalities, Cauchy's means, and superquadracity.
Let 1 < p < ∞, q = p/(p-1) and for define , x > 0. Moser’s Inequality states that there is a constant such that where is the unit ball of . Moreover, the value a = 1 is sharp. We observe that f where the integral operator has a simple kernel K. We consider the question of for what kernels K(t,x), 0 ≤ t, x < ∞, this result can be extended, and proceed to discuss this when K is non-negative and homogeneous of degree -1. A sufficient condition on K is found for the analogue...
We prove several optimal Moser–Trudinger and logarithmic Hardy–Littlewood–Sobolev inequalities for systems in two dimensions. These include inequalities on the sphere , on a bounded domain and on all of . In some cases we also address the question of existence of minimizers.
In this paper we generalize Opial inequalities in the multidimensional case over balls. The inequalities carry weights and are proved to be sharp. The functions under consideration vanish at the center of the ball.
We consider a Hardy-type inequality with Oinarov's kernel in weighted Lebesgue spaces. We give new equivalent conditions for satisfying the inequality, and provide lower and upper estimates for its best constant. The findings are crucial in the study of oscillation and non-oscillation properties of differential equation solutions, as well as spectral properties.