Displaying 121 – 140 of 297

Showing per page

A note on signs of Kloosterman sums

Kaisa Matomäki (2011)

Bulletin de la Société Mathématique de France

We prove that the sign of Kloosterman sums Kl ( 1 , 1 ; n ) changes infinitely often as n runs through the square-free numbers with at most 15 prime factors. This improves on a previous result by Sivak-Fischler who obtained 18 instead of 15. Our improvement comes from introducing an elementary inequality which gives lower and upper bounds for the dot product of two sequences whose individual distributions are known.

A Note on the Men'shov-Rademacher Inequality

Witold Bednorz (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

We improve the constants in the Men’shov-Rademacher inequality by showing that for n ≥ 64, E ( s u p 1 k n | i = 1 k X i | ² 0 . 11 ( 6 . 20 + l o g n ) ² for all orthogonal random variables X₁,..., Xₙ such that k = 1 n E | X k | ² = 1 .

A note on the Poincaré inequality

Alireza Ranjbar-Motlagh (2003)

Studia Mathematica

The Poincaré inequality is extended to uniformly doubling metric-measure spaces which satisfy a version of the triangle comparison property. The proof is based on a generalization of the change of variables formula.

A pointwise estimate for the solution to a linear Volterra integral equation

Angelo Morro (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Utilizzando una generalizzazione della disuguaglianza di Gronwall si fornisce una stima puntuale per la soluzione dell’equazione lineare integrale di Volterra di seconda specie. Tale stima può essere applicata utilmente anche nello studio della stabilità di equazioni di evoluzione per mezzi continui.

Currently displaying 121 – 140 of 297