Displaying 1481 – 1500 of 1525

Showing per page

Weighted multidimensional inequalities for monotone functions

Sorina Barza, Lars-Erik Persson (1999)

Mathematica Bohemica

We discuss the characterization of the inequality (RN+ fq u)1/q C (RN+ fp v )1/p,   0<q, p <, for monotone functions f 0 and nonnegative weights u and v and N 1 . We prove a new multidimensional integral modular inequality for monotone functions. This inequality generalizes and unifies some recent results in one and several dimensions.

Weighted Sobolev-Lieb-Thirring inequalities.

Kazuya Tachizawa (2005)

Revista Matemática Iberoamericana

We give a weighted version of the Sobolev-Lieb-Thirring inequality for suborthonormal functions. In the proof of our result we use phi-transform of Frazier-Jawerth.

Currently displaying 1481 – 1500 of 1525