Displaying 21 – 40 of 45

Showing per page

Fonctions séparément analytiques

Jean Saint Raymond (1990)

Annales de l'institut Fourier

On étudie les fonctions de deux variables réelles qui sont séparément analytiques sur un ouvert du plan. On montre que ces fonctions sont analytiques en tout point du domaine de définition hors d’un fermé de ce domaine dont les projections sur chacun des deux axes de coordonnées sont des ensembles polaires. Inversempent, pour tout tel fermé F , on construit une fonction séparément analytique dont le domaine d’analyticité est le complémentaire de F .

Holomorphic extension maps for spaces of Whitney jets.

Jean Schmets, Manuel Valdivia (2001)

RACSAM

The key result (Theorem 1) provides the existence of a holomorphic approximation map for some space of C∞-functions on an open subset of Rn. This leads to results about the existence of a continuous linear extension map from the space of the Whitney jets on a closed subset F of Rn into a space of holomorphic functions on an open subset D of Cn such that D ∩ Rn = RnF.

On gradients of functions definable in o-minimal structures

Krzysztof Kurdyka (1998)

Annales de l'institut Fourier

We prove the o-minimal generalization of the Łojasiewicz inequality grad f | f | α , with α < 1 , in a neighborhood of a , where f is real analytic at a and f ( a ) = 0 . We deduce, as in the analytic case, that trajectories of the gradient of a function definable in an o-minimal structure are of uniformly bounded length. We obtain also that the gradient flow gives a retraction onto levels of such functions.

On the exact location of the non-trivial zeros of Riemann's zeta function

Juan Arias de Reyna, Jan van de Lune (2014)

Acta Arithmetica

We introduce the real valued real analytic function κ(t) implicitly defined by e 2 π i κ ( t ) = - e - 2 i ϑ ( t ) ( ζ ' ( 1 / 2 - i t ) ) / ( ζ ' ( 1 / 2 + i t ) ) (κ(0) = -1/2). By studying the equation κ(t) = n (without making any unproved hypotheses), we show that (and how) this function is closely related to the (exact) position of the zeros of Riemann’s ζ(s) and ζ’(s). Assuming the Riemann hypothesis and the simplicity of the zeros of ζ(s), it follows that the ordinate of the zero 1/2 + iγₙ of ζ(s) is the unique solution to the equation κ(t) = n.

Positively homogeneous functions and the Łojasiewicz gradient inequality

Alain Haraux (2005)

Annales Polonici Mathematici

It is quite natural to conjecture that a positively homogeneous function with degree d ≥ 2 on N satisfies the Łojasiewicz gradient inequality with exponent θ = 1/d without any need for an analyticity assumption. We show that this property is true under some additional hypotheses, but not always, even for N = 2.

Prevalence of "nowhere analyticity"

Françoise Bastin, Céline Esser, Samuel Nicolay (2012)

Studia Mathematica

This note brings a complement to the study of genericity of functions which are nowhere analytic mainly in a measure-theoretic sense. We extend this study to Gevrey classes of functions.

Principe de la phase résonnante

Jacques Vey (1979)

Annales de l'institut Fourier

On donne une variante du principe de la phase stationnaire, où l’intégrale est remplacée par une sommation sur le réseau cubique de maille égale à l’unité de phase.

Residue class rings of real-analytic and entire functions

Marek Golasiński, Melvin Henriksen (2006)

Colloquium Mathematicae

Let 𝓐(ℝ) and 𝓔(ℝ) denote respectively the ring of analytic and real entire functions in one variable. It is shown that if 𝔪 is a maximal ideal of 𝓐(ℝ), then 𝓐(ℝ)/𝔪 is isomorphic either to the reals or a real closed field that is an η₁-set, while if 𝔪 is a maximal ideal of 𝓔(ℝ), then 𝓔(ℝ)/𝔪 is isomorphic to one of the latter two fields or to the field of complex numbers. Moreover, we study the residue class rings of prime ideals of these rings and their Krull dimensions. Use is made of...

Singularité réelle isolée

Ahmed Jeddi (1991)

Annales de l'institut Fourier

Soit un germe de fonction analytique f : ( R n + 1 , 0 ) ( R , 0 ) , n 1 à singularité isolée en 0 R n + 1 . Nous nous proposons d’étudier le développement asymptotique des intégrales de formes C c , de degré n , sur les fibres de f . Nous montrons que ces développements asymptotiques peuvent être décrits à partir de l’action de la monodromie sur le groupe H n de la fibre de Milnor complexe.

The Lie group of real analytic diffeomorphisms is not real analytic

Rafael Dahmen, Alexander Schmeding (2015)

Studia Mathematica

We construct an infinite-dimensional real analytic manifold structure on the space of real analytic mappings from a compact manifold to a locally convex manifold. Here a map is defined to be real analytic if it extends to a holomorphic map on some neighbourhood of the complexification of its domain. As is well known, the construction turns the group of real analytic diffeomorphisms into a smooth locally convex Lie group. We prove that this group is regular in the sense of Milnor. ...

Currently displaying 21 – 40 of 45