Page 1

Displaying 1 – 5 of 5

Showing per page

Preparation theorems for matrix valued functions

Nils Dencker (1993)

Annales de l'institut Fourier

We generalize the Malgrange preparation theorem to matrix valued functions F ( t , x ) C ( R × R n ) satisfying the condition that t det F ( t , 0 ) vanishes to finite order at t = 0 . Then we can factor F ( t , x ) = C ( t , x ) P ( t , x ) near (0,0), where C ( t , x ) C is inversible and P ( t , x ) is polynomial function of t depending C on x . The preparation is (essentially) unique, up to functions vanishing to infinite order at x = 0 , if we impose some additional conditions on P ( t , x ) . We also have a generalization of the division theorem, and analytic versions generalizing the Weierstrass preparation...

Principe de la phase résonnante

Jacques Vey (1979)

Annales de l'institut Fourier

On donne une variante du principe de la phase stationnaire, où l’intégrale est remplacée par une sommation sur le réseau cubique de maille égale à l’unité de phase.

Currently displaying 1 – 5 of 5

Page 1