-antiderivatives of -adic -functions
Given a subring of the ring of formal power series defined by the growth of the coefficients, we prove a necessary and sufficient condition for it to be a noetherian ring. As a particular case, we show that the ring of Gevrey power series is a noetherian ring. Then, we get a spectral synthesis theorem for some classes of ultradifferentiable functions.
This paper is an extended version of an invited talk presented during the Orlicz Centenary Conference (Poznań, 2003). It contains a brief survey of applications to classical problems of analysis of the theory of the so-called PLS-spaces (in particular, spaces of distributions and real analytic functions). Sequential representations of the spaces and the theory of the functor Proj¹ are applied to questions like solvability of linear partial differential equations, existence of a solution depending...
We exhibit the first examples of Fréchet spaces which contain a closed infinite dimensional subspace of universal series, but no restricted universal series. We consider classical Fréchet spaces of infinitely differentiable functions which do not admit a continuous norm. Furthermore, this leads us to establish some more general results for sequences of operators acting on Fréchet spaces with or without a continuous norm. Additionally, we give a characterization of the existence of a closed subspace...
We characterize stability under composition of ultradifferentiable classes defined by weight sequences M, by weight functions ω, and, more generally, by weight matrices , and investigate continuity of composition (g,f) ↦ f ∘ g. In addition, we represent the Beurling space and the Roumieu space as intersection and union of spaces and for associated weight sequences, respectively.