Continuity properties of convex-type set-valued maps.
In this paper we shall establish a result concerning the covering dimension of a set of the type , where , are two multifunctions from into and , are real Banach spaces. Moreover, some applications to the differential inclusions will be given.
We give a complete characterization of those (where is a Banach space) which allow an equivalent parametrization (i.e., a parametrization whose derivative has bounded variation) or a parametrization with bounded convexity. Our results are new also for . We present examples which show applicability of our characterizations. For example, we show that the and parametrization problems are equivalent for but are not equivalent for .