Previous Page 2

Displaying 21 – 33 of 33

Showing per page

The weak McShane integral

Mohammed Saadoune, Redouane Sayyad (2014)

Czechoslovak Mathematical Journal

We present a weaker version of the Fremlin generalized McShane integral (1995) for functions defined on a σ -finite outer regular quasi Radon measure space ( S , Σ , 𝒯 , μ ) into a Banach space X and study its relation with the Pettis integral. In accordance with this new method of integration, the resulting integral can be expressed as a limit of McShane sums with respect to the weak topology. It is shown that a function f from S into X is weakly McShane integrable on each measurable subset of S if and only if...

The Zahorski theorem is valid in Gevrey classes

Jean Schmets, Manuel Valdivia (1996)

Fundamenta Mathematicae

Let Ω,F,G be a partition of n such that Ω is open, F is F σ and of the first category, and G is G δ . We prove that, for every γ ∈ ]1,∞[, there is an element of the Gevrey class Γγ which is analytic on Ω, has F as its set of defect points and has G as its set of divergence points.

Theory of rapid variation on time scales with applications to dynamic equations

Jiří Vítovec (2010)

Archivum Mathematicum

In the first part of this paper we establish the theory of rapid variation on time scales, which corresponds to existing theory from continuous and discrete cases. We introduce two definitions of rapid variation on time scales. We will study their properties and then show the relation between them. In the second part of this paper, we establish necessary and sufficient conditions for all positive solutions of the second order half-linear dynamic equations on time scales to be rapidly varying. Note...

Currently displaying 21 – 33 of 33

Previous Page 2