The van der Put base for -functions.
We present a weaker version of the Fremlin generalized McShane integral (1995) for functions defined on a -finite outer regular quasi Radon measure space into a Banach space and study its relation with the Pettis integral. In accordance with this new method of integration, the resulting integral can be expressed as a limit of McShane sums with respect to the weak topology. It is shown that a function from into is weakly McShane integrable on each measurable subset of if and only if...
Let Ω,F,G be a partition of such that Ω is open, F is and of the first category, and G is . We prove that, for every γ ∈ ]1,∞[, there is an element of the Gevrey class Γγ which is analytic on Ω, has F as its set of defect points and has G as its set of divergence points.
In the first part of this paper we establish the theory of rapid variation on time scales, which corresponds to existing theory from continuous and discrete cases. We introduce two definitions of rapid variation on time scales. We will study their properties and then show the relation between them. In the second part of this paper, we establish necessary and sufficient conditions for all positive solutions of the second order half-linear dynamic equations on time scales to be rapidly varying. Note...
The addition of fuzzy intervals based on a triangular norm T is studied. It is shown that the addition based on a t-norm T weaker than the Lukasiewicz t-norm TL acts on linear fuzzy intervals just as the TL-based addition. Some examples are given.