Convolution and S' - Convolution of Distributions
Dierolf, Peter, Voigt, Jürgen (1979)
Abstracta. 7th Winter School on Abstract Analysis
Michel Talagrand (1974/1975)
Séminaire Choquet. Initiation à l'analyse
Štefan Schwarz (1964)
Czechoslovak Mathematical Journal
Panaiotis K. Pavlakos (1990)
Mathematische Annalen
Anna Kula (2010)
Banach Center Publications
Two important examples of q-deformed commutativity relations are: aa* - qa*a = 1, studied in particular by M. Bożejko and R. Speicher, and ab = qba, studied by T. H. Koornwinder and S. Majid. The second case includes the q-normality of operators, defined by S. Ôta (aa* = qa*a). These two frameworks give rise to different convolutions. In particular, in the second scheme, G. Carnovale and T. H. Koornwinder studied their q-convolution. In the present paper we consider another convolution of measures...
Talvila, Erik (2009)
Abstract and Applied Analysis
Lee, Hung Hwan, Baek, In Soo (1995)
International Journal of Mathematics and Mathematical Sciences
Benjamin D. Miller (2006)
Fundamenta Mathematicae
Given Polish spaces X and Y and a Borel set S ⊆ X × Y with countable sections, we describe the circumstances under which a Borel function f: S → ℝ is of the form f(x,y) = u(x) + v(y), where u: X → ℝ and v: Y → ℝ are Borel. This turns out to be a special case of the problem of determining whether a real-valued Borel cocycle on a countable Borel equivalence relation is a coboundary. We use several Glimm-Effros style dichotomies to give a solution to this problem in terms of certain σ-finite measures...
Benjamin D. Miller (2007)
Fundamenta Mathematicae
Answering a question of Kłopotowski, Nadkarni, Sarbadhikari, and Srivastava, we characterize the Borel sets S ⊆ X × Y with the property that every Borel function f: S → ℂ is of the form f(x,y) = u(x) + v(y), where u: X → ℂ and v: Y → ℂ are Borel.
Juan Carlos Ferrando (2012)
Studia Mathematica
Let (Ω,Σ,μ) be a complete finite measure space and X a Banach space. We show that the space of all weakly μ-measurable (classes of scalarly equivalent) X-valued Pettis integrable functions with integrals of finite variation, equipped with the variation norm, contains a copy of if and only if X does.
Dimitrios A. Kandilakis, Nikolaos S. Papageorgiou (1990)
Czechoslovak Mathematical Journal
R.B. Holmes (1973)
Mathematische Annalen
Steven M. Moore (1976)
Revista colombiana de matematicas
Charles W. Swartz (1985)
Mathematica Slovaca
R. E. Atalla (1973)
Compositio Mathematica
C. J. Himmelberg (1974)
Rendiconti del Seminario Matematico della Università di Padova
Athanossios Tzouvaras (1988)
Commentationes Mathematicae Universitatis Carolinae
Juan Carlos Ferrando (2016)
Studia Mathematica
Jan K. Pachl (1981)
Colloquium Mathematicae
Michel Zinsmeister (1990)
Séminaire de probabilités de Strasbourg