-continuity of the Fröbenius-Perron semigroup.
A hull of A ⊆ [0,1] is a set H containing A such that λ*(H) = λ*(A). We investigate all four versions of the following problem. Does there exist a monotone (with respect to inclusion) map that assigns a Borel/ hull to every negligible/measurable subset of [0,1]? Three versions turn out to be independent of ZFC, while in the fourth case we only prove that the nonexistence of a monotone hull operation for all measurable sets is consistent. It remains open whether existence here is also consistent....
These notes are devoted to the analysis on a capacity space, with capacities as substitutes of measures of the Orlicz function spaces. The goal is to study some aspects of the classical theory of Orlicz spaces for these spaces including the classical theory of interpolation.
Le problème de Painlevé consiste à trouver une caractérisation géométrique des sous-ensembles du plan complexe qui sont effaçables pour les fonctions holomorphes bornées. Ce problème d’analyse complexe a connu ces dernières années des avancées étonnantes, essentiellement grâce au dévelopement de techniques fines d’analyse réelle et de théorie de la mesure géométrique. Dans cet exposé, nous allons présenter et discuter une solution proposée par X. Tolsa en termes de courbure de Menger au problème...
On étudie certains cônes de mesures sur un espace localement compact, qui sont invariantes par l’action continue d’un groupe localement compact , cette étude étant centrée sur les génératrices extrémales de ces cônes. On dégage d’abord un type très simple d’action continue où l’on décrit complètement la situation. On dégage ensuite une classe d’actions (contenant par exemple l’action de shift de Bernoulli sur ) qui ne sont pas du type précédent, et que l’on étudie en grand détail. Le résultat...
We calculate the cardinal characteristics of the -ideal of Haar null subsets of a Polish non-locally compact group with invariant metric and show that . If is the product of abelian locally compact groups , then , , and , where is the ideal of Lebesgue null subsets on the real line. Martin Axiom implies that and hence contains a Haar null subset that cannot be enlarged to a Borel or projective Haar null subset of . This gives a negative (consistent) answer to a question of...
We show that the cardinality of a compact convex set W in a topological linear space X satisfies the condition that . We also establish some relations between the cardinality of W and that of extrW provided X is locally convex. Moreover, we deal with the cardinality of the convex set E(μ) of all quasi-measure extensions of a quasi-measure μ, defined on an algebra of sets, to a larger algebra of sets, and relate it to the cardinality of extrE(μ).
The purpose of this paper is to give a necessary and sufficient condition to define a category measure on a Baire topological space. In the last section we give some examples of spaces in these conditions.