Page 1 Next

Displaying 1 – 20 of 337

Showing per page

S -measures, T -measures and distinguished classes of fuzzy measures

Peter Struk, Andrea Stupňanová (2006)

Kybernetika

S -measures are special fuzzy measures decomposable with respect to some fixed t-conorm S . We investigate the relationship of S -measures with some distinguished properties of fuzzy measures, such as subadditivity, submodularity, belief, etc. We show, for example, that each S P -measure is a plausibility measure, and that each S -measure is submodular whenever S is 1-Lipschitz.

Scattering length and capacity

M. Kac, J. M. Luttinger (1975)

Annales de l'institut Fourier

An expression in terms of the Wiener integral for the “scattering length” is given and used to discuss the relation between this quantity and electrostatic capacity.

Selection and correction of weighted rules based on Łukasiewicz's fuzzy logic with evaluated syntax

Jiří Ivánek (2017)

Kybernetika

The core of the expert knowledge is typically represented by a set of rules (implications) assigned with weights specifying their (un)certainties. In the paper, a method for hierarchical selection and correction of expert's weighted rules is described particularly in the case when Łukasiewicz's fuzzy logic with evaluated syntax for dealing with weights is used.

Self-affine fractals of finite type

Christoph Bandt, Mathias Mesing (2009)

Banach Center Publications

In the class of self-affine sets on ℝⁿ we study a subclass for which the geometry is rather tractable. A type is a standardized position of two intersecting pieces. For a self-affine tiling, this can be identified with an edge or vertex type. We assume that the number of types is finite. We study the topology of such fractals and their boundary sets, and we show how new finite type fractals can be constructed. For finite type self-affine tiles in the plane we give an algorithm which decides whether...

Self-affine measures that are L p -improving

Kathryn E. Hare (2015)

Colloquium Mathematicae

A measure is called L p -improving if it acts by convolution as a bounded operator from L q to L² for some q < 2. Interesting examples include Riesz product measures, Cantor measures and certain measures on curves. We show that equicontractive, self-similar measures are L p -improving if and only if they satisfy a suitable linear independence property. Certain self-affine measures are also seen to be L p -improving.

Currently displaying 1 – 20 of 337

Page 1 Next