Radon spaces which are not -fragmentable
We investigate the completely Ramsey, Lebesgue, and Marczewski σ-algebras and their relations to the Baire property in the Ellentuck and density topologies. Two theorems concerning the Marczewski σ-algebra (s) are presented. THEOREM. In the density topology D, (s) coincides with the σ-algebra of Lebesgue measurable sets. THEOREM. In the Ellentuck topology on , is a proper subset of the hereditary ideal associated with (s). We construct an example in the Ellentuck topology of a set which is...
An example of a non-zero non-atomic translation-invariant Borel measure on the Banach space is constructed in Solovay’s model. It is established that, for 1 ≤ p < ∞, the condition "-almost every element of has a property P" implies that “almost every” element of (in the sense of [4]) has the property P. It is also shown that the converse is not valid.
We show that a comeager Π₁¹ hereditary family of compact sets must have a dense subfamily which is also hereditary. Using this, we prove an “abstract” result which implies the existence of independent ℳ ₀-sets, the meagerness of ₀-sets with the property of Baire, and generalizations of some classical results of Mycielski. Finally, we also give some natural examples of true sets.