Decomposition in the product of a measure space and a Polish space
We characterize the class of definable families of countable sets for which there is a single countable definable set intersecting every element of the family.
We show that if ℱ is a hereditary family of subsets of satisfying certain definable conditions, then the reals are precisely the reals α such that . This generalizes the results for measure and category. Appropriate generalization to the higher levels of the projective hierarchy is obtained under Projective Determinacy. Application of this result to the -encodable reals is also shown.
We prove that density preserving homeomorphisms form a Π11-complete subset in the Polish space ℍ of all increasing autohomeomorphisms of unit interval.
We relate some subsets of the product of nonseparable Luzin (e.g., completely metrizable) spaces to subsets of in a way which allows to deduce descriptive properties of from corresponding theorems on . As consequences we prove a nonseparable version of Kondô’s uniformization theorem and results on sets of points in with particular properties of fibres of a mapping . Using these, we get descriptions of bimeasurable mappings between nonseparable Luzin spaces in terms of fibres.
Let (ℝ) stand for the hyperspace of all nonempty compact sets on the real line and let d ±(x;E) denote the (right- or left-hand) Lebesgue density of a measurable set E ⊂ ℝ at a point x∈ ℝ. In [3] it was proved that is ⊓11-complete. In this paper we define an abstract density operator ⅅ± and we generalize the above result. Some applications are included.
We investigate some problems of the following type: For which sets H is it true that if f is in a given class ℱ of periodic functions and the difference functions are in a given smaller class G for every h ∈ H then f itself must be in G? Denoting the class of counter-example sets by ℌ(ℱ,G), that is, , we try to characterize ℌ(ℱ,G) for some interesting classes of functions ℱ ⊃ G. We study classes of measurable functions on the circle group that are invariant for changes on null-sets (e.g. measurable...