Measurability of classes of Lipschitz manifolds with respect to Borel -algebra of Vietoris topology
Nous étudions des sous-ensembles parfaits de dont la structure dépend d’une matrice primitive à coefficients entiers . La dimension de Hausdorff d’un tel ensemble “fractal” s’exprime en fonction de la valeur propre réelle maximale de sa matrice associée. Nous utilisons le théorème de Perron-Frobenius pour calculer la valeur exacte (qui est finie et non-nulle) de la mesure de Hausdorff de cet ensemble, et nous montrons à quelle condition (géométrique) cette valeur est maximale.
We prove existence of minimizing movements for the dislocation dynamics evolution law of a propagating front, in which the normal velocity of the front is the sum of a non-local term and a mean curvature term. We prove that any such minimizing movement is a weak solution of this evolution law, in a sense related to viscosity solutions of the corresponding level-set equation. We also prove the consistency of this approach, by showing that any minimizing movement coincides with the smooth evolution...
In this paper, we generalize the result of Hunt and Kaloshin [5] about the Lq-spectral dimensions of a measure and that of its projections. The results we obtain, allow to study an untreated case in their work and to find a relationship between the multifractal spectrum of a measure and that of its projections.